Astaxanthin Protects Primary Hippocampal Neurons against Noxious Effects of Aβ-Oligomers


Increased reactive oxygen species (ROS) generation and the ensuing oxidative stress contribute to Alzheimer’s disease pathology. We reported previously that amyloid-β peptide oligomers (AβOs) produce aberrant Ca2+ signals at sublethal concentrations and decrease the expression of type-2 ryanodine receptors (RyR2), which are crucial for hippocampal synaptic plasticity and memory. Here, we investigated whether the antioxidant agent astaxanthin (ATX) protects neurons from AβOs-induced excessive mitochondrial ROS generation, NFATc4 activation, and RyR2 mRNA downregulation. To determine mitochondrial H2O2 production or NFATc4 nuclear translocation, neurons were transfected with plasmids coding for HyperMito or NFATc4-eGFP, respectively. Primary hippocampal cultures were incubated with 0.1”‰Î¼M ATX for 1.5”‰h prior to AβOs addition (500”‰nM). We found that incubation with ATX (≤10”‰Î¼M) for ≤24”‰h was nontoxic to neurons, evaluated by the live/dead assay. Preincubation with 0.1”‰Î¼M ATX also prevented the neuronal mitochondrial H2O2 generation induced within minutes of AβOs addition. Longer exposures to AβOs (6”‰h) promoted NFATc4-eGFP nuclear translocation and decreased RyR2 mRNA levels, evaluated by detection of the eGFP-tagged fluorescent plasmid and qPCR, respectively. Preincubation with 0.1”‰Î¼M ATX prevented both effects. These results indicate that ATX protects neurons from the noxious effects of AβOs on mitochondrial ROS production, NFATc4 activation, and RyR2 gene expression downregulation.

Lobos P, Bruna B, Cordova A, Barattini P, Galáz JL, Adasme T, Hidalgo C, Muñoz P, Paula-Lima A.

Neural Plasticity

marzo 01, 2016

DOI: 10.1155/2016/3456783

Investigador BNI: Cecilia Hidalgo , Andrea Paula-Lima